With the increasing ability of large language models (LLMs), in-context learning (ICL) has become a new paradigm for natural language processing (NLP), where LLMs make predictions only based on contexts augmented with a few training examples. It has been a new trend exploring ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress, challenges, and future work in ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques of ICL, including training strategies, prompting strategies, and so on. Finally, we present the challenges of ICL and provide potential directions for further research. We hope our work can encourage more research on uncovering how ICL works and improving ICL in future work.
translated by 谷歌翻译
Benefiting from its single-photon sensitivity, single-photon avalanche diode (SPAD) array has been widely applied in various fields such as fluorescence lifetime imaging and quantum computing. However, large-scale high-fidelity single-photon imaging remains a big challenge, due to the complex hardware manufacture craft and heavy noise disturbance of SPAD arrays. In this work, we introduce deep learning into SPAD, enabling super-resolution single-photon imaging over an order of magnitude, with significant enhancement of bit depth and imaging quality. We first studied the complex photon flow model of SPAD electronics to accurately characterize multiple physical noise sources, and collected a real SPAD image dataset (64 $\times$ 32 pixels, 90 scenes, 10 different bit depth, 3 different illumination flux, 2790 images in total) to calibrate noise model parameters. With this real-world physical noise model, we for the first time synthesized a large-scale realistic single-photon image dataset (image pairs of 5 different resolutions with maximum megapixels, 17250 scenes, 10 different bit depth, 3 different illumination flux, 2.6 million images in total) for subsequent network training. To tackle the severe super-resolution challenge of SPAD inputs with low bit depth, low resolution, and heavy noise, we further built a deep transformer network with a content-adaptive self-attention mechanism and gated fusion modules, which can dig global contextual features to remove multi-source noise and extract full-frequency details. We applied the technique on a series of experiments including macroscopic and microscopic imaging, microfluidic inspection, and Fourier ptychography. The experiments validate the technique's state-of-the-art super-resolution SPAD imaging performance, with more than 5 dB superiority on PSNR compared to the existing methods.
translated by 谷歌翻译
Weakly-supervised temporal action localization (WTAL) learns to detect and classify action instances with only category labels. Most methods widely adopt the off-the-shelf Classification-Based Pre-training (CBP) to generate video features for action localization. However, the different optimization objectives between classification and localization, make temporally localized results suffer from the serious incomplete issue. To tackle this issue without additional annotations, this paper considers to distill free action knowledge from Vision-Language Pre-training (VLP), since we surprisingly observe that the localization results of vanilla VLP have an over-complete issue, which is just complementary to the CBP results. To fuse such complementarity, we propose a novel distillation-collaboration framework with two branches acting as CBP and VLP respectively. The framework is optimized through a dual-branch alternate training strategy. Specifically, during the B step, we distill the confident background pseudo-labels from the CBP branch; while during the F step, the confident foreground pseudo-labels are distilled from the VLP branch. And as a result, the dual-branch complementarity is effectively fused to promote a strong alliance. Extensive experiments and ablation studies on THUMOS14 and ActivityNet1.2 reveal that our method significantly outperforms state-of-the-art methods.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Frame Semantic Role Labeling (FSRL) identifies arguments and labels them with frame semantic roles defined in FrameNet. Previous researches tend to divide FSRL into argument identification and role classification. Such methods usually model role classification as naive multi-class classification and treat arguments individually, which neglects label semantics and interactions between arguments and thus hindering performance and generalization of models. In this paper, we propose a query-based framework named ArGument Extractor with Definitions in FrameNet (AGED) to mitigate these problems. Definitions of frames and frame elements (FEs) in FrameNet can be used to query arguments in text. Encoding text-definition pairs can guide models in learning label semantics and strengthening argument interactions. Experiments show that AGED outperforms previous state-of-the-art by up to 1.3 F1-score in two FrameNet datasets and the generalization power of AGED in zero-shot and fewshot scenarios. Our code and technical appendix is available at https://github.com/PKUnlp-icler/AGED.
translated by 谷歌翻译
Surgical activity recognition and prediction can help provide important context in many Robot-Assisted Surgery (RAS) applications, for example, surgical progress monitoring and estimation, surgical skill evaluation, and shared control strategies during teleoperation. Transformer models were first developed for Natural Language Processing (NLP) to model word sequences and soon the method gained popularity for general sequence modeling tasks. In this paper, we propose the novel use of a Transformer model for three tasks: gesture recognition, gesture prediction, and trajectory prediction during RAS. We modify the original Transformer architecture to be able to generate the current gesture sequence, future gesture sequence, and future trajectory sequence estimations using only the current kinematic data of the surgical robot end-effectors. We evaluate our proposed models on the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) and use Leave-One-User-Out (LOUO) cross-validation to ensure the generalizability of our results. Our models achieve up to 89.3\% gesture recognition accuracy, 84.6\% gesture prediction accuracy (1 second ahead) and 2.71mm trajectory prediction error (1 second ahead). Our models are comparable to and able to outperform state-of-the-art methods while using only the kinematic data channel. This approach can enable near-real time surgical activity recognition and prediction.
translated by 谷歌翻译
Text-guided diffusion models have shown superior performance in image/video generation and editing. While few explorations have been performed in 3D scenarios. In this paper, we discuss three fundamental and interesting problems on this topic. First, we equip text-guided diffusion models to achieve $\textbf{3D-consistent generation}$. Specifically, we integrate a NeRF-like neural field to generate low-resolution coarse results for a given camera view. Such results can provide 3D priors as condition information for the following diffusion process. During denoising diffusion, we further enhance the 3D consistency by modeling cross-view correspondences with a novel two-stream (corresponding to two different views) asynchronous diffusion process. Second, we study $\textbf{3D local editing}$ and propose a two-step solution that can generate 360$^{\circ}$ manipulated results by editing an object from a single view. Step 1, we propose to perform 2D local editing by blending the predicted noises. Step 2, we conduct a noise-to-text inversion process that maps 2D blended noises into the view-independent text embedding space. Once the corresponding text embedding is obtained, 360$^{\circ}$ images can be generated. Last but not least, we extend our model to perform \textbf{one-shot novel view synthesis} by fine-tuning on a single image, firstly showing the potential of leveraging text guidance for novel view synthesis. Extensive experiments and various applications show the prowess of our 3DDesigner. The project page is available at https://3ddesigner-diffusion.github.io/.
translated by 谷歌翻译
Recent breakthroughs in semi-supervised semantic segmentation have been developed through contrastive learning. In prevalent pixel-wise contrastive learning solutions, the model maps pixels to deterministic representations and regularizes them in the latent space. However, there exist inaccurate pseudo-labels which map the ambiguous representations of pixels to the wrong classes due to the limited cognitive ability of the model. In this paper, we define pixel-wise representations from a new perspective of probability theory and propose a Probabilistic Representation Contrastive Learning (PRCL) framework that improves representation quality by taking its probability into consideration. Through modelling the mapping from pixels to representations as the probability via multivariate Gaussian distributions, we can tune the contribution of the ambiguous representations to tolerate the risk of inaccurate pseudo-labels. Furthermore, we define prototypes in the form of distributions, which indicates the confidence of a class, while the point prototype cannot. Moreover, we propose to regularize the distribution variance to enhance the reliability of representations. Taking advantage of these benefits, high-quality feature representations can be derived in the latent space, thereby the performance of semantic segmentation can be further improved. We conduct sufficient experiment to evaluate PRCL on Pascal VOC and CityScapes to demonstrate its superiority. The code is available at https://github.com/Haoyu-Xie/PRCL.
translated by 谷歌翻译
作为估计高维网络的工具,图形模型通常应用于钙成像数据以估计功能性神经元连接,即神经元活动之间的关系。但是,在许多钙成像数据集中,没有同时记录整个神经元的人群,而是部分重叠的块。如(Vinci等人2019年)最初引入的,这导致了图形缝问题,在该问题中,目的是在仅观察到功能的子集时推断完整图的结构。在本文中,我们研究了一种新颖的两步方法来绘制缝的方法,该方法首先使用低级协方差完成技术在估计图结构之前使用低级协方差完成技术划分完整的协方差矩阵。我们介绍了三种解决此问题的方法:阻止奇异价值分解,核标准惩罚和非凸低级别分解。尽管先前的工作已经研究了低级别矩阵的完成,但我们解决了阻碍遗失的挑战,并且是第一个在图形学习背景下研究问题的挑战。我们讨论了两步过程的理论特性,通过证明新颖的l无限 - 基 - 误差界的矩阵完成,以块错失性证明了一种提出的方​​法的图选择一致性。然后,我们研究了所提出的方法在模拟和现实世界数据示例上的经验性能,通过该方法,我们显示了这些方法从钙成像数据中估算功能连通性的功效。
translated by 谷歌翻译
来自数据的顺序模式是各种时间序列预测任务的核心。深度学习模型大大优于许多传统模型,但是这些黑框模型通常缺乏预测和决策的解释性。为了揭示具有可理解的数学表达式的潜在趋势,科学家和经济学家倾向于使用部分微分方程(PDE)来解释顺序模式的高度非线性动力学。但是,它通常需要领域专家知识和一系列简化的假设,这些假设并不总是实用的,并且可能偏离不断变化的世界。是否可以动态地学习与数据的差异关系以解释时间不断发展的动态?在这项工作中,我们提出了一个学习框架,该框架可以自动从顺序数据中获取可解释的PDE模型。特别是,该框架由可学习的差分块组成,称为$ p $ blocks,事实证明,该框架能够近似于理论上随着时间不断变化的复杂连续功能。此外,为了捕获动力学变化,该框架引入了元学习控制器,以动态优化混合PDE模型的超参数。 《时代》系列预测金融,工程和健康数据的广泛实验表明,我们的模型可以提供有价值的解释性并实现与最先进模型相当的性能。从经验研究中,我们发现学习一些差异操作员可能会捕获无需大量计算复杂性的顺序动力学的主要趋势。
translated by 谷歌翻译